Correction Quelques réflexions sur l'énergie noté sur 15 points

Sujet B

- 1) Les ressources fossiles et fissiles (uranium) sont non renouvelables car ils sont épuisables. 0,5pt
- 2) L'uranium 238 et l'uranium 235 ont le même nombre de protons mais un nombre différents de neutrons, ce sont des isotopes. 0,5 pt
- 3) Une réaction de fission nucléaire est une réaction au cours de laquelle un noyau lourd se scinde en noyaux plus légers sous l'impact d'un neutron. 0,5pt
- 4) Au cours d'une réaction nucléaire le nombre de charges et de masse se conservent : loi de Soddy
 235 + 1 = 154 + 79 + x
 X = 3

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{154}_{62}Sm + ^{79}_{30}Zn + 3^{1}_{0}n$$
 1 pt

5) a) $E = |\Delta m|c^2$ Calcule de Δm : m (Sm) + m (Zn) + 3 m (n) – m(U) – m (n) $\Delta m = -2,6933.10^{-26}$ kg $E = 2,42.10^{-11}$ J

L'énergie libérée par la fission d'1 noyau d'uranium est de 2,42.10⁻¹¹J 1,5 pt

- b) On cherche l'énergie libérée par 1 gramme d'uranium et on connait l'énergie libérée par la fission de 39,021711.10⁻²⁶ kg
- 1 g = 10^{-3} kg E = $\frac{2,42.10^{-11} \times 10^{-3}}{39,021711.10^{-26}}$ E = $6,2.10^{10}$ J 1 GJ = 10^{9} J

L'énergie libérée par la fission d'1 gramme d'uranium est de 62 GJ 1,5 pt

c) D'après le document 2, dans une pastille d'uranium il y a 3,5% d'uranium 235

Une pastille de 7 g contient donc $\frac{3.5 \times 7}{100}$ g d'uranium

L'énergie libérée par une pastille est donc :

$$E = \frac{6.2 \cdot 10^{10} \times 3.5 \times 7}{100}$$

$$E = 1.5 \cdot 10^{10} \text{ J}$$

1 pastille d'uranium libère environ 10¹⁰J donc autant d'énergie qu'une tonne de charbon d'après le document 6. 2pts

- 6) L'énergie stockée dans le charbon est libérée par les combustions. 1 pt
- 7) On calcule le temps au bout duquel 99% des noyaux sont désintégrés c'est-à-dire 7 demi-vies

Neptunium Np	$7 \times 2,1.10^6 = 15$ millions d'années	
Plutonium Pu	98 années	
Américium Am	3000 années	
Césium Cs	16 millions d'années	

Il faut plus de 16 millions d'années pour que ce conteneur ne contiennent quasiment plus de déchets radioactifs. 1,5 pt

- 8) a) Propane: CH₃-CH₂-CH₃ 0,5 pt
 - b) $C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g)$ 1 pt

La combustion est complète donc lorsqu'1 mol de propane brûle il se forme 3 mol de dioxyde de carbone (CO_2)

On calcule la quantité de propane utilisée lorsque le barbecue fonctionne 2 h.

n (C₃H₈) =
$$\frac{\varrho \times V}{M}$$
 V = 1 L ϱ = 515 g.L⁻¹ et M = 44 g.mol⁻¹

n (C_3H_8) = 12 mol II se formera donc 36 mol de dioxyde de carbone

Equation chimique	2	C ₃ H ₈ (g)	+ 5 O ₂ (g)	→ 3 CO ₂ (g) +	4 H ₂ O (g)
Etat du système	Avancement (mol)	n (C₃H ₈)	n (O ₂)	n (CO ₂)	n (H ₂ 0)
Etat initial	X =0	12	Excès	0	0
Etat intermédiaire	Х	12 – X	Excès	3 X	4 x
Etat final	X _{max} = 12	$12 - x_{max} = 0$	Excès	36	48

Masse de dioxyde de carbone formé m = $n \times M$ m = 36×44 = 1600 g

$$M(CO_2) = M(C) + 2 M(O)$$
 $M(CO_2) = 44 g.mol^{-1}$

Au cours de ce barbecue, il se formera 1600 g de dioxyde de carbone . 2,5 pts

Type de ressources	Avantages	Inconvénients
Ressources fossiles	Pas de déchets radioactifs	Emission de dioxyde de carbone (gaz
	Moins dangereux à manipuler	à effet de serre) et d'autres gaz
		polluants
		Libère moins d'énergie que la fission
		de l'uranium
		Non renouvelables
Ressources fissiles	Pas d'émission de CO ₂	Déchets radioactifs avec très longue
	Libère beaucoup d'énergie	durée de vie
		Non renouvelables
		Risques accidents nucléaires

Sur 1 pt