ANALYSE DE SONS MUSICAUX

Capacité(s) contextualisée(s) mise(s) en jeu durant l'activité :

 Réaliser l'analyse spectrale d'un son musical et l'exploiter pour en caractériser la hauteur et le timbre.

I. But

- Réaliser l'analyse spectrale du son émis par différents instruments jouant une même note pour vérifier qu'ils sont accordés.
- Mettre en évidence la notion de timbre.
- Découvrir la notion d'accord.

II. <u>Documents</u>

(s'approprier)

II.1. Doc.1: Le diapason

En musique, le diapason (**Fig.1**) est un outil donnant la hauteur (fréquence) d'une note repère conventionnelle, en général le la. Par extension, le diapason désigne la hauteur absolue de la note de référence mondialement acceptée (actuellement la fréquence du la³ est de 440 Hz).

Fig.1 : Un diapason sur sa caisse de résonance

II.2. Doc.2 : L'accordage d'un instrument de musique

L'accordage est l'action d'accorder un instrument de musique de façon à ce que le son qu'il produit ait la bonne fréquence. Il se fait soit à l'oreille, soit à l'aide d'un diapason ou d'un accordeur électronique (**Fig.2**).

Fig. 2 : Accordeur électronique

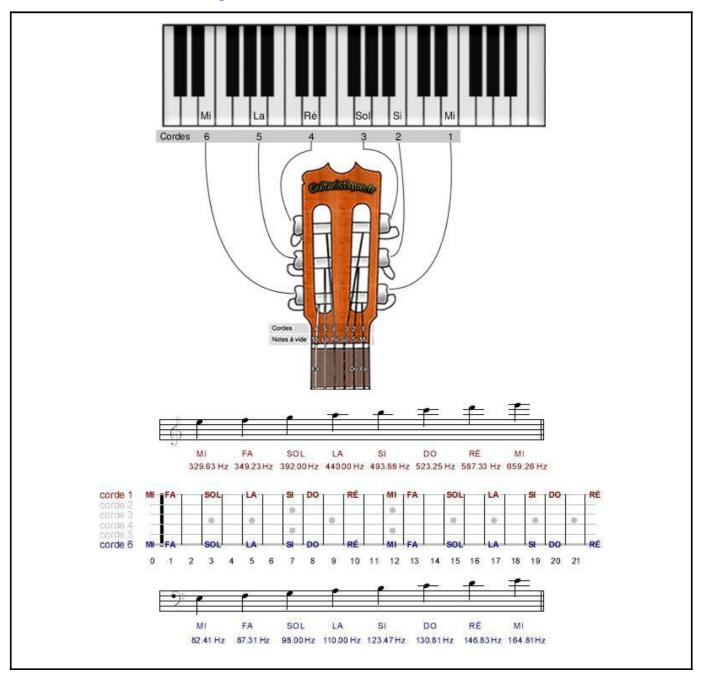
II.3. Doc.3: Les accords musicaux

En musique, un accord est un ensemble identifiable de notes simultanées. Il est constitué d'au moins deux intervalles harmoniques.

Pythagore a développé un modèle géométrique au cours de ses travaux sur le monocorde. Il note que le rapport entre deux notes le plus simple après l'octave (2/1), la quinte (3/2) est parfaitement harmonique.

Zarlino note ensuite que les rapports mathématiques simples entre deux notes donnent des intervalles agréables, (harmoniques) les rapports plus compliqués des intervalles moins naturels. Ainsi, le rapport 2/1 produit l'octave, le rapport 3/2 la quinte, 4/3 la quarte, 5/4 la tierce majeure, 6/5 la tierce mineure et 9/8 la seconde majeure, et bien d'autres encore.

Pour Zarlino, un accord parfait est donc la superposition de deux intervalles simples (5/4 et 6/5), aboutissants à un intervalle plus simple (3/2).


Source : Wikipédia

ia with

II.4. Doc.4 : Fréquences des notes de la gamme tempérée

Note	Octave				
	1	2	3	4	5
Do	65,4064	130,813	261,626	523,251	1046,50
$Do\sharp$ Reb	69,2957	138,591	277,183	554,365	1108,73
Re	73,4162	146,832	293,665	587,330	1174,66
Re# Mib	77,7817	155,563	311,127	622,254	1244,51
Mi	82,4069	164,814	329,628	659,255	1318,5
Fa	87,3071	174,614	349,228	698,456	1396,91
Fa# Solb	92,4986	184,997	369,994	739,989	1479,98
Sol	97,9989	195,998	391,995	783,991	1567,98
Sol# Lab	103,026	207,652	415,305	830,609	1661,22
La	110,000	220,000	440,000	880,000	1760,00
La# Sib	116,541	233,082	466,164	932,328	1864,66
Si	123,471	246,949	493,883	987,767	1975,5

II.5. Doc.5: Notes d'une guitare

III. Etude préliminaire

(s'approprier, analyser)

- 1. A quelle condition un instrument est-il accordé?
- 2. Déterminer la note formant une quinte avec le do.
- 3. Déterminer la note formant une tierce majeure avec le do.
- 4. Déterminer la note formant une tierce mineur avec le mi.
- 5. En déduire un accord parfait.

IV. Vérification expérimentale de l'accord d'un instrument

IV.1. Manipulations

- Brancher un micro sur l'interface de mesure raccordée à l'ordinateur.
- Paramétrer le Logiciel Latispro de manière à enregistrer 200000 valeurs pendant 3 secondes.
- Enregistrer le son émis par un diapason.
- Enregistrer les sons émis par divers instruments jouant la même note si possible.

Appel du professeur

IV.2. Exploitation des résultats

- Mesurer à l'aide du logiciel, la période du son émis par le diapason et les différents instruments.
- En déduire la fréquence de ces différents sons.
- Tracer à l'aide du logiciel le spectre fréquentiel de ces différents sons.
- Vérifier que les fréquences calculées précédemment correspondent bien à celle du fondamental dans les différents spectres fréquentiel.
- Comment qualifier la nature du son émis par le diapason ?
- Les instruments sont-ils accordés ?
- Les sons perçus par deux instruments jouant la même note sont-ils identiques pour autant ? Pourquoi ?

Appel du professeur

V. <u>Mise en évidence expérimentale de la relation entre deux notes d'un intervalle harmonique</u>

V.1. Manipulations

 Comme dans l'expérience précédente, enregistrer successivement les sons émis par un instrument jouant les notes constituant un intervalle harmonique (quinte, tierce majeur ou mineur).

Appel du professeur

V.2. Exploitation des résultats

- Tracer à l'aide du logiciel les spectres fréquentiel de ces deux notes sur un même graphique.
- Montrer à l'aide de ce graphique la relation entre certaines harmoniques des deux sons formant un intervalle harmonique.
- En déduire pourquoi deux notes peuvent former un intervalle harmonique.

Appel du professeur

VI. Compte-rendu

Rédiger le compte rendu de cette activité expérimentale.

Fiche méthode: Rédiger une compte rendu d'activité expérimentale