FICHE BILAN

Formation

Les atomes s'associent en formant des liaisons covalentes simples ou multiples (doubles ou triples) de manière à respecter les règles du « duet » ou de l'octet.

Doublet liant

Chaque doublet liant (liaison covalente simple) formée permet à un atome de gagner un électron sur sa couche externe.

Doublet non liant

Chaque doublet
non liant est constitué
d'une paire
d'électrons externes
ne participant pas
à la liaison.

Représentation de Lewis

 $H = \overline{N} = H$ $C : K^2 L^4 = {}_7N : K^2 L^5 = {}_8O : K^2 L^6$ C, N, O respectent la règle de l'octet.

H Ils sont entourés de :

• C : 4 doublets liants (4 \times 2 = H \overline{O} \overline{O} H 8 électrons)

• N : 3 doublets liants et 1 doublet non liant ($3 \times 2 + 1 \times 2 = 8$ électrons)

H-C=O • O: 2 doublets liants et 2 doublets non liants (2 × 2 + 2 × 2 = 8 électrons)

Source: Livre 1S HACHETTE édition 2015

Structure spatiale

Principe

Basé sur la répulsion électrostatique des doublets d'électrons externes.

Une liaison multiple est traitée comme une liaison simple.

La molécule de méthane est tétraédrique.

Exemples

La molécule d'ammoniac est pyramidale.

La molécule d'eau est coudée.

La molécule de méthanal est triangulaire.

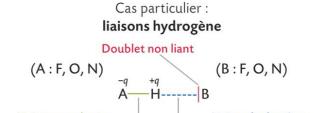
Source : Livre 1S HACHETTE édition 2015

Fiche Bilan

Électronégativité

à attirer à lui le doublet d'électrons qui le lie à un autre atome.

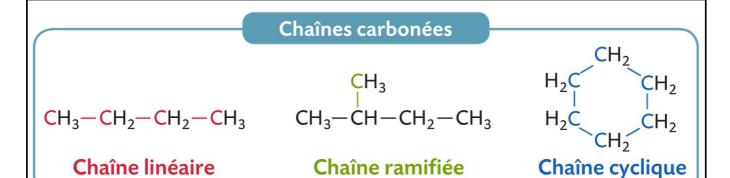
■ Interactions électrostatiques entre deux molécules

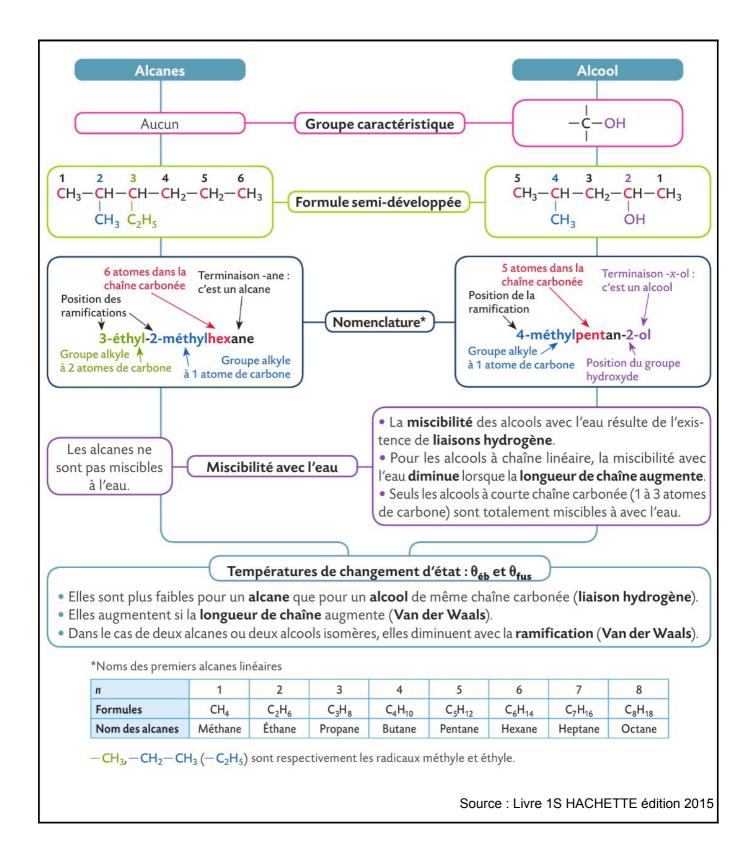

Valable pour tous les solides moléculaires :

interactions de Van der Waals

Interaction électrostatique attractive entre charges partielles +q et -q de signes opposés.

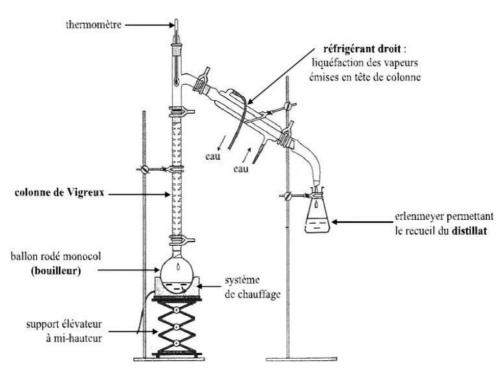
Exemple:
$$+q$$
 $-q$ $+q$ $-q$ H $-Cl$

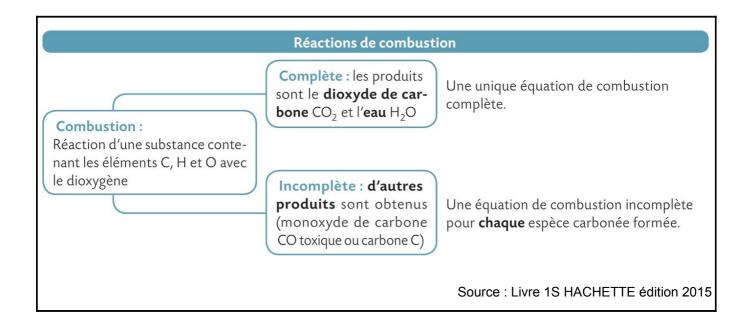

$$H \longrightarrow \frac{-q}{Cl}$$


Cohésion des solides moléculaires

• La cohésion des solides moléculaires est assurée par des **interactions de Van der Waals** et, lorsqu'elles existent, par des liaisons hydrogène.

Source: Livre 1S HACHETTE édition 2015


Source: Livre 1S HACHETTE édition 2015



Distillation fractionnée

- Principe : elle permet de séparer les constituants d'un mélange de liquides miscibles ayant des températures d'ébullition nettement différentes.
- Le liquide le plus volatil est le **distillat** et le liquide le moins volatil est le **résidu**.

Source: Livre 1S HACHETTE édition 2015

